Homo Metallicus: Is Recycling the New Garbage? (2008)

by Jane Anne Morris

Sculptural wall of rusty bent vertical copper strips.The history of Homo metallicus mirrors more than technological prowess: consequences may be closer than they appear. And, they are coming from our blind spot.

Before humans started hammering portable copper mirrors about five thousand years ago, the only mirrors were pools of clear still water, reflecting trees and sky. A thousand years after those first handheld reflectors, people began making them of bronze, an alloy of copper and tin. Production of copper and its alloys fouled the clear pools, consumed the trees, and sullied the sky. Today, the view from the slag heap takes in not only the mine but the town dump.

Meanwhile, the concept of recycling has acquired an aura more saintly than the practice of recycling warrants. In my own small way, I once contributed to recycling mythology. So here, taking copper as my starting point, I unpack the assumptions that can lead from a justifiable horror at metal mining practices, to an all-too-uncritical embrace of recycling.

Copper Through the Ages

Native Americans in Wisconsin made points and knives of hammered copper.

The Mesopotamians ushered in the Age of Bronze by making of it a statue of a bull. Harder than copper, bronze holds an edge better and is more resistant to corrosion. In the earliest fortified towns it was used for shields and helmets, and battle axes, for attacking both humans and trees. Chisels, awls, pendants, sickles, bracelets, swords, 4000-year old Chinese coins shaped like tools–all of bronze. Bronze tweezers to clean wounds made by bronze dagger blades.

By 3000 years ago copper, bronze, and iron were in widespread use in the middle and near east, for knives, razors, hammers, axes, always axes. The Assyrians wore armor of leather and bronze; the Greeks and Romans used bronze and steel. In the Middle Ages, as advances in weaponry relegated chain mail to the status of underwear, metal-plated armor evolved. Bronze was hammered into huge cathedral doors, and cast into bells that rang out alarms and devotions.

Copper alloyed with zinc produced brass, long used for locks, doorknockers, and chandeliers. Bronze cannons powered by the gunpowder that became widespread in the 16th century launched brass artillery shells. Ships of war were bottomed in copper against corrosion, then clad in iron against artillery attack.

Somebody discovered that if you pour molten lead through a sieve off a tower into a tub of water, the droplets form spheres. Hardened with antimony, these spheres become musket shot. About 1850, copper and brass shot cartridges replaced paper ones.

Coopers shaped copper into barrel hoops. Bronze was used in bearings, gears, ship screws and propellers. Upholsterers tapped brass tacks. and turned sundry alloys into an array of kettles, dishes and trays. Tinkers kept them in repair.

But our copper habit was then in its infancy.

The late nineteenth century development of electricity stimulated demand for copper and other metals as the telegraph, telephone, light bulb, and other appliances went from curiosities to necessities. Fine copper wire was wound around armatures for motors and turbine generators at hydroelectric plants, and soon, steam-fired ones. It twisted around the inside of new gadgets and appliances. Outside of them, copper wire and lead-sheathed cables were strung behind walls, between buildings, along streets, across continents, under oceans.

A fledgling automobile industry blossomed, consuming fifteen to fifty pounds of copper per vehicle, plus a full metal complement of its sister elements.1 The US alone has produced well over 700 million cars and trucks.2 The infamous 1938 “War of the Worlds” broadcast could have been heard on only a few tens of thousands of radios in the world, perhaps half of them in the US. Each contained its cache of coiled copper.3

Copper usage surged to feed the second world war machine, then surged again afterwards during an unprecedented expansion in production of, well, everything, from people to pollution to power tools.

By now we have made billions upon billions of radios, televisions, phones, copy machines, blenders, fax machines, bun-warmers, electric toothbrushes, washer-dryer sets, and all manner of electronic gadgets, most in just the last few generations. Add the factories to make all of this stuff, and the electricity to run both factories and appliances. The armature of a single 500 megawatt turbine generator uses about fifteen tons of copper wire.4 Today, over half a million miles of transmission lines crisscross the US alone.

Mining “Externalities”

But all this copper, lead, tin, zinc, and iron was not handed over on a silver platter. After the first nearly pure lumps and nodules were chipped out of rock faces or fished out of streambeds, most of it was acquired only with much greater effort. It had to be mined, from deeper and deeper in the earth, or farther away. It then had to be concentrated and smelted, from poorer and poorer ores. Early copper mining used ores as rich as 20%, 30%, or sometimes even 50% copper. Today, ore as poor as 0.3% is mined.5

The earliest smelting, for copper and lead, used trees to coax from rich ores the treasured metals. Wood that fed the flames that fired the bricks, heated the houses, cooked the food, and baked the bread was used also to feed the smelters. Forests receded from the villages, the riverbanks, the hillsides.

As early as 8000 years ago deforestation-caused soil erosion led to abandonment of villages in the middle east. Four thousand years ago the Indus valley society’s end was hastened by the cutting of the forests required in part by extensive metal smelting.6 As Plato lamented in his Critias that centuries-old deforestation had left parts of Greece looking like “the skeleton of a sick man,” deforestation began in earnest in Rome. The Romans burned millions of tons of charcoal in their smelters, and left 20-30 million tons of slag.7

Settlements grew up around mines, and trees disappeared from wider and wider swathes of the surrounding countryside. In the early Bronze Age of Central Europe, a day’s work of a smelter consumed thirteen tons of rock and twenty-five cubic yards of wood to yield about 600 pounds of raw copper.8 By the thirteenth century, most European settlements around mines were treeless, and parts of north and northwest China were experiencing wood shortages. In 1475 in Rhineland, one district alone required 5000 woodcutters to make 10,000 tons of charcoal per year to fuel the metal works.9

The poor woodchoppers of classic Euromyths, the hollow-eyed figures bent double under their loads in National Geographic postures, all scoured the land for wood to burn in the metal works. Brueghel’s pastoral scenes hint at the extent of the cutting of the forests. By the 15th century in Europe there was so little wood left that ships had to be made of imported wood, or abroad. By the 16th century, most Portuguese ships were built in the colonies.10

The gunpowder that made projectiles possible also opened the way for the use of blasting for deeper tunneling and faster acid mine drainage.11 In the late 17th century, coal was used not only for smelting, but for pumps and engines, too. The coal-diggings filled with acid water that seeped or gushed into aquifers; open-pit mines stained rivers and the watersheds they nourished.12

In the 19th century US, one blast furnace in Pennsylvania used 750 acres of wood per year.13 At the Rio Tinto copper mine in Spain, circa 1900, ore roasting to speed oxidation of sulfides produced “strangling vapors that set men [sic] and animals coughing…killed off every green thing it touched [and] killed every tree within ten or fifteen miles.”14 Then oil and natural gas joined the pantheon of fossil fuels that powered the mining and processing, and it shows. The largest Superfund site in the US is a copper mine near Butte, Montana, formerly operated by Anaconda Corporation.15

On a copper-lined chute, the whole world is sliding into the ecological footprint of a single species.

How Much Did We Get?

By 3000 years ago when many so-called “civilizations” were huddled in fortified villages arming themselves with an array of bronze and iron weapons, humans had mined a mere 10,000 tons of copper.16

From that time until about 1800, for all the ornamented bronze bells, full-length mirrors, dented helmets, and early industrial machinery and engines, we had mined but five million tons of copper.17

And for the next century’s dose of the red metal, for coppering the bottoms of Spanish frigates,18 brass cartridge casings, the machinery of the full force of the Industrial Revolution — we humans mined more than twice what had ever been mined: 12 million tons of copper for the 19th century.19

The next fifty years, encompassing two world wars and the spread of the automobile, the radio, the washing machine, among other cultural signposts, saw us wrest 70 million tons of copper from the earth’s crust.

And since 1950 when Picasso made his bronze She-Goat,20 we have mined at least another 275 millions tons of copper.

Time Period Amount of Copper Mined
6000 to 3000 years ago 10,000 tons
3000 years ago to 1800 5 million tons
1800-1900 12 million tons
1900-1950 70 million tons
Since 1950 275+ million tons
Cumulative total 360+ million tons

Put the numbers from that chart onto a graph, and you will see a slope like the one where your floor meets your wall.

Where is this 360 Million Tons of Copper Now?

Copper production since the dawn of the twentieth century comprises at least 98% of all the copper ever produced. Where is it?

Only a tiny fraction of mined copper is dissipated (in exploding ordnance, or copper in chemical form used in fungicides, herbicides, dyes, etc.) As for the rest, unlike the forests of trees, the veins of coal, the barrels of oil used to fuel the smelters and the mining machinery and pumps.

Thousand-year-old hammered copper points stolen a century ago from sacred Indian burial grounds still sit behind glass cases in the Wisconsin State Historical Museum. Picasso’s bronze She-Goat still thrills sightseers at the Museum of Modern Art, while most of the cars, radios, and televisions you have owned, not to mention blow dryers and that blender you burned out making pesto, sit in landfills somewhere.

There is still an enormous reservoir of already-refined metal lying around waiting to be reused. From the time of melting battle-axes into coins and back again, it has been understood that metals, valued always for their strength, their corrosion-resistance, their malleability — could be re-shaped and re-formed into whatever suited the needs of the moment, or the era.

You can bet that native americans didn’t throw out their copper knives after one use. Artisans who cast bells through the ages knew to scour the villages for broken bronze vessels, cracked mirrors, discarded brass door-knockers and the like to melt down to cast a new village bell. The Vikings hammered stolen crucifixes into brooches.21 Eighteenth century churchwardens were accused of stealing the lead from church roofs to sell to plumbers.22

What about all of the metals accumulating above ground? Compared to mining and processing the primary ore, copper recovery from scrap involves fewer technological steps and less capital investment. Energy costs are 5% to 33% of the energy costs of using primary ores, depending on the type of scrap input and the end-use desired.23 The technological challenges and environmental costs of mining are bypassed completely.

The Sting

This is where a conventional analysis would veer off into a swoon for recycling, as I did in the original “Homo Metallicus,” written in 1995 to support a mining moratorium.24 I imagined hundreds of millions of tons of copper, one transistor radio’s worth at a time, wedged under blotchy mattresses in landfills. A giant green banner announced, “RECYCLING, YAY!!”

My mind furnished the diorama, too: a Native American sharpening an ever-smaller copper knife; an armorer fussing to keep his knight’s metal jacket in repair as long as possible;25 townspeople bringing baskets of cracked latches and broken doorknockers to re-cast for a new village bell. And, yes, a sweaty biblical smith beat swords into plowshares and spears into pruning hooks.26

While arguing against metal mining, and laboring under the hallucinatory wholesomeness of that vision, I pulled a Bait-and-Switch. On myself. In the darkness of the Switch, a blind spot of major proportions lurks, and I stood in the middle of it.

That diorama was the Bait. It faded like a time-dissolve in a documentary, and at the moment of blackout, I made the Switch. Ta-Daa!! emerged the concept of RECYCLING, swaddled in impressive statistics and good vibes.

That Switch in the Dark allowed me to more or less equate a tinker fixing a teakettle with a metal processing plant digesting a truckload of smashed appliances. I told myself that a long but unbroken cultural thread linked the tinker’s taps to the roar of the recycling plant’s huge furnaces, flotation tanks, and electrolytic baths.

So there I was standing in my blind spot when a municipal recycling truck rumbled by, bearing a load of freshly sorted metal scrap.27 Down the road a piece, it joined another truck bringing concentrated ore from a mine. This is the part of the story that I did not want to think about: both trucks headed for the same facility, one that turned out raw copper in the form of ingots, wires, and sheets. A few steps later, factories pressed and laced the shiny copper into products painstakingly designed for short life, non-reusability of parts, and difficulty of repair. Into products calculated to, for fifteen minutes or so, meet a stylistic milepost created and manipulated by the corporation selling the product.

Once purchased, the product (except for the energy it uses) becomes a “liability” for the economy, because being in current use blocks the next sale. After you toss it — landfill or recycle bin, it makes little difference — purchase of a replacement helps to “grow” the economy once again. The point of our system is not need and use, but sale and profit. The goal is to move through the cycle — and resources — as quickly as possible, honoring the principles of planned obsolescence, conspicuous consumption, and perpetual economic “growth.” Recycling is part of this cycle.

Where I had equated the smith and the recycling plant, I should have equated the mine with the recycling center or landfill. A landfill or a recycling center is just another source of copper, another kind of mine. Metal smelting and refining, whether it be by flotation, chemical solvents, heating, or electrochemical methods, is nasty business.28 Separating the copper from a plastic-encased circuit board is no environmental picnic. Except for minor differences in processing at the plant, the source of the copper — landfill, recycle bin, mine — is irrelevant.

Beyond Recycling

What is relevant is that when the biblical smith beheld a compromised spear, he wondered whether to make another spear, or a pruning hook. Or maybe a scythe. Or, whether to set the metal aside for later use. But, he did not wonder whether to chuck the spear into the goat pasture. For the smith, “use” included what we would call “reuse.”

Yet, he was not recycling. The concept of recycling does not make sense unless you are already in the habit of discarding usable material. Recycling is parasitic on garbage, in both a material and a sociolinguistic sense. Garbage is defined not by physical characteristics, but by social ones. A refilled glass milk bottle is not garbage. The same bottle thrown “away” after a single usage is.

Recycling–a term that did not take on its current meaning until the 1970s29 — is akin to a retronym. Retronyms like land line and acoustic guitar are applied retrospectively and retroactively after some new development (here, cell phones and electric guitars) makes their invention necessary for clarity’s sake. So, when we realized that a garbage can or the town dump could essentially be reopened as a mine, we christened it “recycling.” Recycling signifies not a new attitude toward resources, but the large-scale discovery of new metal “deposits.” Recycling (as opposed to reuse) does not emerge as a concept until the idea of Garbage is so well established that most people cannot imagine life without it. (See also, “Car.”)

From the smith to the modern recycler, we can tally the societal “innovations” that distinguish them. Producing for profit instead of need is one. Producing to meet false or created needs is another. Massaging the economy to insure that the apparent and immediate cost of repair far exceeds that of buying a new item is also critical. Most of the externalities churned out as a result of the smith’s craft were underfoot, not foisted upon the disempowered a county or a continent away. Tax policies, lax enforcement of environmental regulations, and artificially cheap fuel, electricity, and transportation, all pile on to subsidize mining, recycling, and for-profit manufacturing. Today, society’s incentives work against making long lasting, needed products for use and reuse, and in favor of what Paul Palmer of the Zero Waste Institute calls the Garbage Paradigm.

Recycling leaves the garbage problem untouched in the same way that energy efficiency leaves our energy policies and practices unaddressed. When I screw in an efficient light bulb, I am glad to be using less electricity to illuminate my writing desk, but I don’t fool myself that I’m saving the planet. I know that my act frees up more kilowatt-hours to be sold at rock-bottom rates to corporations that manufacture throw-away frou-frou or fashion statement cars. Similarly, when we dutifully recycle metal (and I do so, when possible), we help manufacturers save energy and increase their profit margins.

However, we do nothing to alter the monstrous system that lavishes incentives on production of waste. Adding a nasty re-refining process (and calling it recycling) to a nasty mining process does not get us out of our tragic loop: wreaking havoc so that we can “grow” the economy at a dizzying and unsustainable level. This is the lesson I take from Paul Palmer’s heartening work. In his own words,

“The basic problem that has always plagued recycling is that it accepts garbage creation as fundamental. Zero waste strategies reject garbage creation as a failure, actually an abomination that threatens the planet…”30

Rejecting the Abomination of Garbage

Put yourself into a trance. Erase the idea of Garbage, and substitute Zero Waste. Now, think about radios.

I am something of a radio junkie, and I blush to think of how many copper-laden radios I have consigned to landfills. But I would still be using my first AM-FM radio if I had been able to get it fixed. I’ve never bought one as part of an interior decorating scheme, nor abandoned one for any reason but nonfunctionality.

Usually, what goes wrong amounts to a frayed or loose wire somehow involved with the volume control, tuning knob, or speakers. I’ve opened up most of my broken radios in repair efforts that almost always turned into autopsies. Sometimes, rescue attempts became demolition as my efforts to merely open the box disabled critical components. On other occasions, soldering gun in hand, I just couldn’t get at the spot where I knew the problem lay.

I’d gladly pay an extra few bucks for screws (instead of plastic rivets) as fasteners, more secure wiring connections, and accessible repair areas. These and other sensible design features that promote long life and easy repair present no great technological challenges. The obstacles — and there are many — reside instead in an economic system, complete with ideological props, that depends on the Garbage Paradigm.

The consequence of pretending that “recycling” is a departure from the Garbage Paradigm is that nothing will change. But if we step out of our blind spot, we face a glorious prospect: re-imagining the world without “garbage” that all humans lived in until just a geological blink ago. Dismantling the corporate garbage system will not occur unless we also free ourselves from false needs it fails to satisfy, and attend to deeper needs that it warps.

That world need not be a bleak land of denial. Where is the thrill in throwing out a year-old cell phone? It may be that the most rewarding life possible, as Stephanie Mills explores in Epicurean Simplicity, is one that would please Earth as well as its “highest” primates. Reflecting on her basic requirements, Mills muses, “Meeting these needs as sparingly as possible makes abundant the kinds of riches that can’t be owned.”31 And, I would insist on including the dancing that Emma Goldman would not do without.32


First published in Synthesis/Regeneration 46: A Magazine of Green Social Thought, Summer 2008.

Jane Anne Morris is a corporate anthropologist living in Madison, Wisconsin. Her most recent book is Gaveling Down the Rabble: How “Free Trade” is Stealing Our Democracy (Apex Press).


The Energy Nightmare of Web Server Farms (2008)

by Jane Anne Morris

A huge rusty tank, seen from the lower end, looms in an industrial setting of pipes and a smokestack. The end of the tank looks like a face with huge eyes and a black stud-lipped mouth. Definitely scary and looming.One distracted click during my Internet research for this article gave me instant access to 936 photos of Brad Pitt. According to people who know, that click activated some 7000 computers in the search, and perhaps twice as many more trying to induce me to buy something or type in my personal data.1 And because I recycle, adjust my thermostat to save energy, and scrawl grocery lists on the backs of envelopes, I had to wonder what ecological footprint my peek at Brad had left behind. After considerable clicking and flipping (I still do hardcopy), I stared into the Internet and saw the car of the twenty-first century.

Let me back up and ask a question: Where do you think all your stored emails are? They’re not in the hands of tiny file clerks inside your computer — exactly. Nor in the library computer, where you can access them. Where are all those Bible-length attachments that nobody read but you’re saving anyway? The hot web sites and blogs? Where do we imagine all this stuff is?

It’s in the Cloud — the everything-seemingly-everywhere there-ness of the Internet. The Internet Cloud is generated and maintained by facilities called data centers or web server farms. These rustic-sounding server farms (think of a geek with a hayfork?), like Concentrated Animal Feeding Operations (CAFOs), are tucked — if something that covers dozens or even hundreds of acres can be said to be “tucked” — here and there across the country, downplayed if not concealed in generic buildings.

At server farms, zillions of complexly linked computers constantly juggle electrons storing messages, texts, songs, web sites, advertisements, film clips, birthday cards and other cultural effluvia. The mission of each server is to prevent captive electrons from doing what all free electrons want to do: dissolve back into the electromagnetic ether to hook up randomly. All that data coded into electronic pluses and minuses enables you, at any moment, to get the latest information about a massacre in Colómbia, a cancer cluster in New Jersey, or the current address of your high school sweetheart. Considerable server effort is devoted to articulating Brad’s dimples. 

The mission of each server is to prevent captive electrons from dissolving back into the electromagnetic ether to hook up randomly.

Server farms are double-dippers. There, colonies of warehouses packed with rows of racked, stacked computers draw electricity like black holes suck light. That’s the first scoop. Because the heat generated by this conglomeration of circuitry, unless dispersed, will damage the equipment, server farms are air conditioned to a brisk temperature. That’s the second scoop. A typical server farm uses at least half of its electricity for cooling.2 Imagine a refrigerator wrapped around an electric stove, and you have the essence of a server farm: a pig-in-a-blanket that consumes electricity in almost unimaginable quantities. 

Given access to the right cable or wireless network, you tap into the resulting buzzing Cloud by means of a desktop computer or even a handheld. Gadgets so teensy, you could hide one in a coffee mug. Server farms so huge that one warehouse might be the size of several football fields.3 And so needy that their electricity demand is measured in double- or triple-digit megawatts. A single megawatt (MW) can support about a thousand homes, on average.4

Server farm operators order up their electricity before they finalize their construction plans. In Sacramento, over 50 MW of capacity was requested. A server farm in New Jersey asked for 100 MW. In San Jose, 180 MW.5 An Austin Energy utility spokesperson told the Wall Street Journal that 200 MW (8.5% of its customer load) went to server farms.6 A “farm” near Seattle asked for 445 MW. A California utility was asked for 340 MW now, to be expanded by a thousand megawatts in the near future.7 At least three utilities have reportedly received requests for over 1000 MW of capacity, as reported by Susan Mandel back in 2001.8

Google Corporation alone reputedly already uses over 20 server farms, housing some half a million servers.9 It is supposedly already the largest electricity user in one state.10 The 2006 electricity demand of major search engine facilities (just a small portion of the Cloud) uses an estimated 5000 megawatts.11 Converted to residences, that’s about five million homes’ worth of electric capacity.12 Converted to electricity generation, that’s ten 500 MW coal plants. (Want one in your back yard? Wanna work in the mine?) A modest server farm that draws only 20 to 30 megawatts uses enough electricity to power 20 to 30 thousand homes.

The search for cheap land prices and low electricity rates has led server farm operators to site them in rural areas, towns and smallish cities, or near large hydroelectric plants that provide cheap kilowatts. Backup (and unregulated) diesel generators stand ready to power up during blackouts so customers don’t get irritated at having to wait 10 seconds for a download.
Server farms get cut-rate electricity: per-kilowatt-hour rates cited in recent articles range from 1.8 to 3.4¢.13 You did read that right. If I divide my monthly electric bill by the number of kwh I use, it always comes to over 20¢ per kwh. But I don’t pay industrial rates, which average out nationally just over 5¢ per kwh, and I don’t get other special deals often offered to large users.14

A server farm might sport a nice corporate goose pond with a fountain. Or, it might squat in generic buildings in an old industrial district. The advantages of being inconspicuous have not been lost on server farm entrepreneurs: one company brags that its “low profile, non-descript building does not attract attention.”15 But as Barry Commoner reminded us, there’s no such thing as a free lunch: everything has to go somewhere.

The ecological footprint of a server farm isn’t any prettier than that of a power plant, a toxic waste dump, a gigantic feedlot, or a freeway. The Cloud is floating on a cradle-to-grave network of wrecked aquifers, oily cormorants, radioactive tumbleweed, and melting icecaps. According to one analyst, ordering a book online burns a half-pound of coal.16 The Internet seems clean because its ecological footprint is elsewhere. 

The Internet seems clean because its ecological footprint is elsewhere.

The Internet Cloud’s supporting infrastructure is well nigh invisible to most of its users. Its costs — to earth, air, water, health, species diversity and future generations, among others — are externalized onto people “over there”: those who host the strip mines and nuclear power plants, whose soccer fields are brownfields if not Superfund sites, and whose children go to schools nestled next to high-voltage power lines. Many of them live in low-income communities, or low-income countries. This is what the so-called “Environmental Justice” movement was about: privileged people stow the unpleasant, unhealthful, and ecologically devastating consequences of their comfortable lifestyles on the usual suspects, the lower classes, wherever they may be.

Meanwhile, on the bright side of the tracks, we are in the process of uploading our whole society onto the Internet. With our encouragement, those geeks with hayforks at the server farms are working overtime pitching ragged clumps of cultural data into this great content provider in the sky. In electronic form it stores fluff from all of our cultural pockets: baby pictures, thoughts about the election, yard sale items, songs of rage and joy, video games, pornographic videos, environmental impact statements, recipes, home movies, bank records, herbal remedies, and come-ons to purchase any tchotchka ever imagined. Often, once is not enough: online backup services are proliferating. If there’s an ecological footprint — and of course, there is — it is not going to Pop Up on our computer screens. 

With almost uncanny prescience, the story of the automobile offers a preview of where we are heading with the Internet Cloud. The Model T was introduced a century ago. It was a wonder, it was affordable, it got 25 miles per gallon of gas, it opened up hitherto unknown possibilities to the masses.17 It would change the world, democratize transportation, and grant even those of moderate income unlimited horizons to explore. The cost? Apparently, just some cranking and a little fuel. If you had argued then that within a few generations the nation’s populace would rarely venture more than a quarter mile from their cars’ coveted parking spots, that world politics would be dominated by struggles to control petroleum deposits, and that chunks of the planet’s icecaps would be plopping into the oceans like so many frogs off their lily pads, people would have questioned your sanity.

James Howard Kunstler wrote a witty, melancholy, sadly fond memoir of the automobile’s stealth takeover of US culture (with infrastructure to match) that dropped us off in The Geography of Nowhere. Today, people say, “I’d like to stop using my car,” then add that unfortunately they can’t get to work, play, school, sports, yoga class, or the grocery store without it. And why is that? Because we’ve built our whole culture around it.

The car didn’t just penetrate our culture, it reconfigured its DNA. Like a retrovirus at its most efficient, it rewired our culture to serve its ends. Now, we’re up to our chins in smog and pavement and can’t quite figure out what to do next. Among other effects of our car addiction is cross-training in the art of externalization.

On the street, countless people sit in their idling cars, windows closed, with the heater or AC on, while passing pedestrians choke on fumes. That’s as good a model of externalization as any I know. Inside vehicular capsules, we can ignore not only our own immediate exhaust but also all the mining, smelting, refining, casting, and manufacturing, that make possible our automobile adventures.

Imagine if when you drove your car, you experienced the total consequences of your driving. The pollution from your tailpipe would be connected by a hose directly to your lungs. The waste from the manufacture of your car would be stirred into your coffee. The oil waste — all those -enes, -anes, -ones and -ines from the drilling, production, and refining of your gasoline — would be intravenously injected into your body. You would drink water contaminated with all of the wastes poured into waters around the country and the world so that you could fill up with gas. If we did this every time we started ‘er up and drove two blocks to the convenience store, we would certainly get around differently and drastically reduce driving time.

The consequences of dependence on the Internet Cloud are geographically, temporally, and socially displaced from users. The disconnect is almost absolute, leaving us leaning toward glowing, translucent screens emitting wind-chime notices that we need to save a document or check our mail. The terroir of a click is so faint at the screen end, and so diffuse at the footprint end, that we feel free to pretend that it is nonexistent. 

Like a single car’s exhaust that seems too insubstantial to matter, a single click’s contribution to any planetary ills seems to evaporate before it can be pinned down. Yet the impact remains.
I can hear the epithets. Luddite. Anti-Technology. Afraid of Change. Anti-Progress. Did I miss any? Oh, yeah, Stuck in the Past. I hear how much “we” need the Cloud and our computers. Activists offer horrifying online descriptions of clearcutting, five-legged androgynous frogs, and radioactive tumbleweeds pinned by prevailing westerlies against barbed-wire fences. We email each other about how bad the big corporations are: the stripminers of coal, the refiners of oil, the producers of chemicals, the manufacturers of land mines. The Internet Cloud, the argument goes, makes us more effective activists and provides unprecedented access to a wide range of information. Is this like saying we have to destroy a village in order to save it?

The automobile is the alpha and the omega of our daily fare. We will be locked in its embrace for some time to come if we do not first succumb to its strangulation. Shall we now do the same with the Internet Cloud?

Those 936 photos really are at the crux of the issue. Could I survive on fewer photos, say, half of them? Maybe if the consequences of my clicking for Pitt pics were dumped onto my kitchen table, I would settle for a tabloid stuffed under the mattress. Should the Pitt stuff be available on the same terms as the telephone numbers of my representatives, or my neighbor’s homemade mittens web site? That is to say, cheap or free to the users, thanks to government subsidies and the sloughing off of externalities onto the usual suspects: the distant, the poor, and the future.

I would like to help decide what my government subsidizes. Which raises the Censorship Bogeyman. With a past as a teacher, activist, and writer, I can hardly imagine any task force that I would want to determine the limits of my exploration. But some collection of task forces already does that. Why don’t we have a real public debate about it?

Like most technological innovations whose promoters promise social benefits along with profits, the Cloud has nearly everyone gushing about its democratizing effects and promises of greater freedom for all. Isn’t it about time for a Virtual Reality Check, as Stephanie Mills famously asked in her 1986 book, What Ever Happened to Ecology? Last century our society adopted the automobile as its soul mate and re-ordered everything from our eating habits and courtship customs to the landscape itself. Dare we apply to computers and the Cloud today the same critiques that we applied to the car culture only in retrospect? Why should computer use be off-limits?

When I hear a mouse click I hear a coal train, see a “reclaimed” wasteland, smell an oily rotting otter corpse, and think of what it’s costing us, and future generations for those 936 photographs. While screwing in that ultra-efficient light bulb, we might think twice about doing all of our shopping, courtship, research, communication, and “organizing” online.


Disclosure: Corporate anthropologist Jane Anne Morris typed this (original) article on a new laptop, purchased because it has become nearly impossible to get a publisher to accept a manuscript in “hardcopy.” In the 1980s, she fought against lignite strip mining and power plants in Texas, wrote a dissertation on the quasi-public utility company involved, and served on the Austin, Texas, Resource Management Commission.

She is the author of Not In My Back Yard: The Handbook (Silvercat Publications, 1994). Her forthcoming book, Gaveling Down the Rabble: How “Free Trade” Is Stealing Our Democracy, will be published by Apex Press. She bikes year-round in Madison, Wisconsin and her last electricity bill was for 78 kwh.

First published in Synthesis/Regeneration 45, Winter 2008.


The Case for Un-Building America: Watch Where You Put Your Stimulus Package (2009)

by Jane Anne Morris

The Run-Up to Collapse

b19objects158 copyToday as many hundreds of billions of dollars are flying out of federal coffers to bail out and bulk up The Economy, it is instructive to review a few of the places we have not put enough money in the last decades. Universal single-payer health care; living wages for all; effective and affordable public transit systems; facilities and programs for all disabled persons; worker safety measures in all industries; community gardens; bike paths; and renewable energy-powered off-grid public buildings, to name but a few.

In addition to those community-oriented needs that we just could not fund, we also lacked resources, it seems, to protect and restore our environment. Cleanups of Superfund sites, and many other terribly fouled areas, are incomplete, stalled, or not even begun. We lacked funds for state-of-the-art pollution controls on all power plants, factories, and refineries; for cleaning up our lakes, rivers, and aquifers; and for healing the habitat destruction, degradation, and erosion wrought by corporate agriculture, mining, clearcutting, and the like.

Yet now, after repeatedly finding that it was always too expensive—for government, for corporations, for taxpayers—to take care of Community and Environment, suddenly the care and feeding of The Economy trumps all. What is this creature Economy that is more important by far than Community and Environment, and so must be “saved” at all costs?

The State of the Economy

A vast calamity has befallen our Economy: People are buying only what they need. They are wearing out old stuff before throwing it away and buying new stuff. They are driving only when necessary. They are spending more time with nearby family and friends. They are borrowing as little money as possible, and only when it is important. They are reusing things. I hear on the radio that such “cutting back” is devastating The Economy.

In what kind of world are such moderately prudent practices calamitous?

Advice comes at us from all sides: Don’t slow your spending, borrowing, or consuming, or things will get even worse. Instead, borrow money, take a trip to the democracy theme park, and buy some plastic flags shipped in from Asian factories. Shop early and often. Our Economy’s slogan might as well be: Don’t fix that flat–buy a new car!

Evidently, matching consumption to needs will wreck The Economy. This state of affairs is at once absurd, and true: it would wreck our Economy.

What Humans Made Can Be Re-Made

If an economy were a shoe, the little tag inside would say, “All man-made materials.” Our current Economy did not spring fully formed from the primeval slime: human beings concocted every last detail of it. In the US, we set up and maintain an economy that rewards sleazy con artists playing with sleight-of-hand “investments,” while dealing organic farmers near-starvation wages and nonexistent health care. Since we made our Economy, we could make it differently.

If Earth were a shoe, the tag would say something like “Follows Laws of Nature, see Deep Ecology.” While human beings can make drastic changes to Nature (such as mountaintop removal, or species eradication), we cannot change the fundamental principles that govern it. After we turn off the pumps and the fans, water will still run downhill. All the six-legged (and immune) survivors of a pesticide-spraying session will reproduce enthusiastically and in abundance. The laws of Nature, not economic beliefs or theories, determine what happens when we pump prodigious amounts of CO2 into the atmosphere.

“Economy” is how one very powerful species refers to the way it makes a living on its home planet. That “home planet” is singular. Since there is no separate Weekend Getaway Planet or Toxic Waste Dump Planet, the idea of Economy ought to be inextricably bound with the idea of Ecology (as they are in origin from the Greek oikos, house).

I do not know which notion is more dangerous: that we cannot change the economic principles we live by, or that we can change the laws of Nature. Those twinned assumptions form the backdrop for the whacked-out social arrangements that brought us to the present circumstance. People handing out money under the “Yes We Can” banner would do well to keep in mind that only by assuming the reverse—that we can (and must) change The Economy, but we cannot change the laws of Nature–might we be able to turn this aircraft carrier of an economy around.

The first step is to recognize it for the Ponzi scheme that it is.

Ponzi Stories

Since our present Economy subsidizes consumption well beyond need, and encourages (if not demands) waste, any stimulus package dumped into this situation will encourage the exact practices that brought us to where we are now.

Our Economy is a Ponzi scheme, paying off a few current participants by racking up huge IOUs to be paid in the future. This principle underlies not only the recent Madoff scheme, but also mortgage-backed securities, interest on lent money, stock appreciation, and much other speculative economic “growth.” (This in contrast to real value added through labor, as when a craftsperson turns raw materials into an accordion).

Many IOUs are written in the currency of nonrenewable resources, and thus transcend the strictly economic. In a sense, our Ponzi scheme Economy is entangled with a Ponzi scheme Ecology. As with Economy, we are pushing off nonredeemable IOUs onto the future. We are using up resources, from oil to trees to topsoil. In the extraction, processing, and use of them, we pollute, leaving future generations a much-degraded “base.”

Victims of a classic (purely economic) Ponzi scheme need a “story” to explain how they can seemingly get something for nothing, so they are handed some financial mumbo-jumbo that purports to “explain” the promised profits. The catalyst that lubricates our parallel ecological Ponzi scheme society is cheap oil, or more accurately, the cheap fossil fuels that have so transformed our world over the last two centuries. The “story” that makes it plausible to some is an assurance of future “discoveries”: as we rip through resources, we will “discover” more of the same, or new sources, or some magic technological solution that will fix the consequences that we cause today.

Our societal Ponzi scheme is political as much as economic and ecological: “leaders” must offer convincing promises, rationalizations, and myths to keep people believing, especially during times of crisis. Recall the joke about a head of state and his successor, just as the former is stepping down. The outgoing leader hands over two envelopes, each to be opened only when things go seriously wrong. At his first crisis, the new leader opens envelope #1 and reads: “Blame the previous administration.” He does so, and things clear up for a while. But problems come again, and he opens the second envelope: “Prepare two envelopes.”1 Our political Ponzi scheme harmonizes with the economic and ecological versions, and gives us the moral fiber to continue to do the wrong thing. But, like any Ponzi scheme, it must end.

Transition to Sustainability

Since the US economy is obviously in transition, let’s consciously make it a transition to a sustainable economy.

The goal of any “stimulus” should be taking care of people’s needs, their communities, and the environment in a sustainable manner. The goal should not be using energy, using resources, producing things, selling things, bailing out speculators, or creating jobs. Frankly, if we take care of Community and Environment (something we have not done for some time), Economy and “jobs” will take care of themselves. No stimulus or bailout money should fund anything that is not sustainable.

Because the “sustainability” mantra has become part of innumerable “green marketing” schemes, it is essential to define it, and set up a practical measure for use in evaluating possible courses of action. We can think of this as a way to establish a “fair share” standard: a per-person sustainable level of energy and resource use.

Since we live on a finite planet, the main concern here is not efficiency, but AMOUNT. If we are cutting too many trees, it matters little that we are using efficient factories to turn them into toilet paper. At the base of any real notion of sustainability is the carrying capacity2 of our planet.

Far from being a new idea, much of this work has already been done,3 in fact, been done over and over again. Drawing on that work, and initiating a focused public debate on the matter, should be among the first things that “stimulus” money is used for.

The carrying capacity/sustainability literature suggests that at a modest living standard (well below the US average), Earth’s carrying capacity is about two billion persons. Current world population is about seven billion. Extrapolate. As a tentative target for the US, we should reduce our use of nearly everything by 90-95%. This is not about “other people.”>

In ecology, everything counts. The pound of coal burned for each Internet click. The humongous bank buildings downtown. The strip mall. Your Labrador retriever’s dinner, and chew toy. The take-out foam carton. Every electronic gadget you own. Any hopes of achieving a sustainable society rest on undertaking a vast program of un-building America.

There is much work to be done: taking out highway lanes and putting in public transit, taking out parking lots and putting in community gardens. McMansions that can be salvaged can become libraries, recreation centers, or apartments; those that cannot will provide building blocks for community garden tool sheds or greenhouses. Gymnasium equipment can be hooked up to generators to make fitness clubs net energy providers instead of energy sinks. There are people all over the world building houses that use almost no energy—isn’t that a much better task for our valuable workers than building SUV’s?

Here Comes the Dollar

Unfortunately, sustainability has no place in our current Economy, which has recently been placed in the hands of a “new” team whose mottos seem to be “Representation without Taxation” and “Full Speed Ahead.”

Though we figure carrying capacity in ecological terms (resources and energy), we pay for food and shelter with dollars, denominated in units pegged to The Economy. Far from reflecting the sustainability of this or that purchase or habit, the dollar scale does the opposite. Highly processed, energy-intensive food from afar is cheaper than locally produced stuff. Chintzy, short-term housing is cheaper to build and buy than lasting structures with low energy requirements. Repair of such things as shoes, CD players, and watches is expensive or near impossible, while buying new ones is cheap. The more you use of something, the less you pay for it.

Like ships passing in the night, Community and Environment’s sustainability criterion sends one signal, while Economy’s dollars broadcast the opposite. Now is the time to choose Community and Environment, and sustainability—not as an advertising slogan but as a way of life.

After the Second Envelope

Perching on the sloping shoulder of empire in decline has proved to be an excellent vantage point for eloquent musings on previous societies in the same position. If you change the names of the factions, Edward Gibbon’s descriptions of the decline of the Roman Empire could be about the USA today.4 Barbara Tuchman wasn’t holding up her distant mirror out of idle curiosity, either; her words could have described the recent coronation in our nation’s capital:

…in decadence chivalry threw its brightest light; never were its ceremonies more brilliant, its jousts and tournaments so brave, its apparel so splendid, its manners so gay and amorous, its entertainments so festive, its self-glorification more eloquent.5

Most empires fall for one or both of two reasons: they overreach and go bankrupt funding wars to control people and protect resources, or they go into ecological collapse after long denial of accumulating consequences. We are on track for both.

Our current (new) leaders opened up the first envelope even before taking office. In an attempt to avoid opening the second, they urge us to have “confidence” in an Economy based on waste, theft, pollution, denial, and hubris, while frantically printing and borrowing money to keep a Ponzi Economy going a little longer.

We have a peephole of opportunity that we can use to soften the slope of what John Michael Greer calls the long descent in his recent book of the same name. After the second envelope, it’s ecology all the way down.

(First published in Synthesis/Regeneration 49, spring 2009.)


Regulatory Agencies Have Failed Us–Let’s Fail Them: Out of the Agencies and Into the Legislatures (2010)

By Jane Anne Morris

Too Big to Fail?

Billowing smokestackRegulatory agencies are not, and never were, the Great Protectors of the public interest that hazy origin myths suggest.1 Understanding regulatory failure entails accepting this inconvenient truth and then moving on.
Continue reading “Regulatory Agencies Have Failed Us–Let’s Fail Them: Out of the Agencies and Into the Legislatures (2010)”

Fukushima: A “Normal Accident” (2012)

By Jane Anne Morris1


In retrospect (that is, after an accident has occurred), it is often easy to look back at a situation and describe it as an accident waiting to happen. Too often we just leave it at that, perhaps hoping that someone else will figure out how we could have foreseen it.

Somebody has. Charles Perrow has reviewed a range of technologies—including petrochemical and nuclear facilities, dams, mines, weapons and space research, aircraft and airways, DNA research, and shipping—and written an insightful and persuasive analysis of the kinds of systems in which accidents are inevitable, or “normal” in his terminology.2 Nuclear power plants are excellent examples of such systems.

According to Perrow, normal accidents occur in systems that share a few key characteristics. First, the system has many components (parts, procedures, and operators) arranged in a complex way. (That is, it’s not one long linear process where all that happens is that A leads to B leads to C, etc., and that can be stopped easily at any time.)

In such a system (with many components arranged complexly), it is obvious that many small failures—things like faulty switches, burned-out light bulbs, minor operator errors—will occur. Such failures are not expected to be catastrophic because numerous back-up and emergency response systems—also complex—are in place.

The second characteristic of a system that will, according to Perrow’s analysis, experience normal accidents, is that two or more failures (of parts, procedures, or operator judgment)—failures that may be trivial in themselves—can interact in unexpected ways. For example, part P (a light bulb on a gauge) might fail at the same time that part Q (part of a back-up system) is off-line for maintenance. The failure of part P might leave operators unaware that a problem was developing; the inactive status of part Q might deactivate the emergency system that would have (probably) either alerted operators to the problem, or shut down now-dangerous components.

By the time they see a problem, they will be unable to act appropriately…
But the problem is just beginning. For one thing, the operators may not know that anything unusual is happening. There is so much going on, that in a system with literally billions of components, they may not know that part Q is not on-line. They have no way of knowing that the light bulb in a particular gauge should be blinking “danger.” The complex system, with all of its gauges, back-up systems, and interdependent processes (for example, certain pumps automatically go on when temperature in a given area—or the gauges that show temperature—reach a pre-established threshold) continues to function and react. Until other things go “wrong,” the operators will be unaware that there is a problem. By the time they see a problem, they will be unable to act appropriately because they have no way of knowing what else has happened.

In the case of Three Mile Island, it took many months of sifting through computer data, numerous interviews, and much technical analysis before a reasonable scenario of “what happened” could be constructed. This circumstance leads to an inherent contradiction in high-risk systems: the very procedures that are necessary during normal operations are hopelessly inadequate during emergencies.

During normal operations, a centralized control team must know exactly what each operator is doing, so that one person does not do something that would interact with another component to endanger the whole system. Therefore, operator procedures must be fixed and exact. However, accidents tend to happen when events for which there are no clear procedures occur. The lack of procedures, combined with operators’ ignorance of the exact state of affairs, means that operators must take independent action based on their best guess as to what is happening.

Without suggesting that back-up systems and redundant safety features should be eliminated, Perrow notes that these measures add to the complexity of a system and decrease the likelihood of timely comprehension of a problem.

For instance, suppose that to ensure the accuracy of control panel information about a very important measurement, there are not one but two gauges measuring the amount of water in a tank. Now suppose that one shows that the tank is empty and the other that it is full. Is one gauge broken? If so, which one? Is the tank either empty or full? Perhaps it is half full, and both gauges are malfunctioning or disconnected.

Assume that a partly full tank could account for observed leakage, and that an empty tank would explain overheating. What if other gauges suggest neither leakage nor overheating? Are both of these gauges accurate, or is one or both faulty, and if so, which? And so on. Even in this oversimplified hypothetical case, the possibilities multiply rapidly when a possible doubt is introduced regarding each piece of information.

In some technologies, normal accidents are relatively frequent but limited in catastrophic potential. Wind turbines can be dangerous and have caused horrible injuries to maintenance personnel, but they are not going to spin off and decapitate thousands of people. In nuclear technologies, the catastrophic potential is immense, as we are seeing again at Fukushima. Nuclear accidents, viewed through historical or systems analysis, are a certainty. It is hubris to think otherwise.


Eat, Sleep, Click: The Bicycle-Powered Internet (2012)

by Jane Anne Morris


Huge powerline tower seen from center bottom for geometric effect.Save a tree, bank online. Subscribe Online, reduce your carbon footprint. Listen to music online, watch movies online, read books online. No mess, no fuss. Google Inc. has photovoltaic (PV) solar panels on its headquarters. With all that footprint-lightening, you may soon be down to no ecological footprint at all, right?

Since everyone wants the Internet to have a gentle footprint and not be “evil,” we should power it with green electricity. Start with a bicycle generator and a server. Here are some back-of-the-envelope figures.

All the stuff on the Internet, or in the “cloud,” is kept aloft by computers called servers (plus routers and so on). An average server draws 400 watts/hour, half of that for cooling (fairly typical), and 3500 kilowatt-hours (kwh) per year, 1 because it never shuts down.

A healthy biker can produce a constant 100 watts/hour on a bicycle generator, a generous estimate. Four generator bikes at 100 watts/hour apiece would power a server. Alas, that single server can’t accomplish much by itself. Various techies have estimated that a single online search activates between 1000 and 20,000 servers, often located all over the world.

Numerous servers are housed together in places called server farms or data centers. To power a modest-sized data center (50,000 servers) by bicycle power would require almost a million pedalers and an area equivalent to 347 football fields.2 Data centers can be as small as closets at the back of a business, or as large as several football fields and use as much electricity as small cities. They run 24/7/365, and tend to have multiply redundant backup systems, so no one has to wait ten seconds to learn from a web site if it’s raining outside.

If you live in a city or a large town, you probably pass by one or more data centers each day. But they don’t advertise themselves with signs saying, “Corporate Data Center Containing Highly Sensitive Personally Identifiable Information,” so you might not notice. And you won’t see 347 football fields of bike generators surrounding them because they’re powered by the coal and nuclear power plants that supply most electricity in the U.S.

What finally matters is not this or that server or data center, but the overall Internet electricity use. How much bicycle-power would it take to run the Internet? Later we can figure out how to landscape the facility, and decide where to put the snack bars and port-a-potties.

The EPA’s conservative and dated number for 2006 Internet electricity use within the U.S. alone is 60 billion kwh. Getting that much electricity from the setup described above would require 600 million bike generators. Assuming 6-hour pedaling shifts, that would take 2.4 billion pedalers. Think of the stimulus to the global economy: pedaling jobs for the entire populations of the U.S. (305 million), Canada (33 million), Mexico (110 million), South America (382 million), India (1.5 billion), and Japan (127 million).

Five years later, that number has doubled (at least). It is widely claimed that in 2010 the Internet used 3% of U.S. electricity (3884 billion kwh), which is 117 billion kwh. So, we’re now talking about 1.2 billion bike generators and 4.8 billion pedalers.


MEGAWHAT? A solar panel rated at one kilowatt of capacity will produce one kilowatt-hour of energy if the sun shines on it steadily for an hour. Terms like megawatt, kilowatt, and watt express power or capacity, while megawatt-hour, kilowatt-hour, and watt-hour measure energy. A kilowatt is a thousand watts; a megawatt is a million watts or a thousand kilowatts.


In 2007, an independent outsider who is not on the dole of the IT industry calculated that U.S. Internet energy use was around 350 billion kwh annually, approximately six times the EPA’s 2006 estimate,3 and three times the conservative 2010 estimate used above. I will use the lower numbers, but actual Internet electricity use may be much higher.

What about worldwide Internet electricity use? Available 2010 estimates—200 billion kwh4 — are probably conservative, as they were calculated by an analyst who works for the likes of the EPA, the New York Times, and various IT industry corporations. Extrapolation from the number of servers worldwide results in about the same number: the reported 60 million servers would use 210 billion kwh annually. What’s that in bicycles?

Using the same assumptions as before, that worldwide Internet could be powered by a mere two billion bike generators, with 8 billion people pedaling. (Current world (over)population is 7 billion.) If you placed that many bicycles end-to-end, they would reach far enough for three round trips to the moon, and then a trip back up. (Maybe we should terraform the moon and put the generator system up there?)

Who would want to design a bicycle-generator system to power the Internet? Someone who wanted to imagine a human-scale equivalent for how much energy the Internet already sucks up. What about other “renewable” energy sources?


At the biggest, most successful photovoltaic projects in the world, the rule of thumb is that ten acres of panels produces a megawatt of capacity (as would 10,000 bicycle generators). A square mile (640 acres) could provide 64 MW. Each megawatt might yield 1.5 million kwh/year, so the annual kwh from a square mile of good solar would be 96 million.

Generating an annual 117 billion kwh (2010 U.S. Internet use) with solar would require at least 1220 square miles of PV panels, and 78,000 MW.5 For 200 billion kwh number for world Internet use, it would take 2081 square miles (that’s Delaware) and 133,200 MW.

What about a wind-powered Internet? Experience in the wind turbine industry (and again in the choicest spots), has shown that it’s good to get 20 MW of capacity per square mile. Three million kwh a year from each megawatt of capacity is also optimistic.

Using wind turbines to get that 117 billion kwh for 2010 U.S. Internet electricity use would require 1950 square miles.6 The 200 billion kwh for 2010 world Internet use would require 3300 square miles. Most wind power sites are less productive than the sites from which these numbers were derived.

It’s not appropriate to compare solar and wind directly to conventional power plants. Except for maintenance and accidents, coal and nuke plants operate 24/7, though demand drops at night. In contrast, solar is always down at night, and wind is variable, exactly what data centers can’t be.

With solar, more than half the electricity would have to be stored for use when little or no power is generated. The huge batteries necessary for storing this much power look like a cross between upturned railroad freight cars and electric substations. They require space, maintenance, and cooling. Every time energy is converted from one form to another (like rotating energy to electrical energy to heat energy, or electricity into batteries and then out again) energy is lost. That slippage increases the initial kwh necessary, but I have not factored that in.

Also omitted in calculations here are the power lines, substations, maintenance roads, other support facilities, and ladders and buckets of ammonia water to clean PV panels. Not to mention the fact that most areas don’t get nearly as much sun as the prize spots already selected for large solar arrays. I’m also not considering the resources needed to manufacture, transport, and maintain the PV panels. Similar considerations apply to wind power.

Solar and wind have different advantages. Fewer acres of solar than wind are required for each MW of capacity (10 versus 32), but for each MW capacity of wind, you get more kwh/year (3 million as compared to 1.5 million). That is because you are never, ever, going to average more than 12 hours daily of solar. However, you might average more than that for wind, depending on location and circumstances.

At the scale necessary to power data centers, solar, wind, and even bicycle power involve considerable habitat loss. Bicycle space to power the 2010 U.S. Internet would be about 4304 square miles (about the size of the Everglades). For the 2010 world Internet, about the combined area of Delaware and Connecticut. When chunks of ecosystem are shoveled into industrialism’s mill, Gaia is diminished. Acres sacrificed to solar arrays, wind farms, power line rights of way, or thousands of bicycle generator pads destroy habitat no less than those given over to GMO crops, cooling ponds, interstate highways, and parking lots.

I’ll leave it to curious readers to do their own math on powering the Internet with switchgrass, corn cobs, or cow patties.


How can the Internet use so much electricity? Suppose you have an awesome video of your cat at a laptop using her little cat feet to scroll through online celebrity cats in fetching poses. (Click for full screen.) It’s stored in your email account, and you have a copy on your laptop and/or handheld. Your email is backed up by the company that offers it, and you have backup service for your laptop, so that’s more Internet storage space on servers somewhere; then the back-up companies back up their back-ups. You send the cat video to fifty people. Some store it in their emails; some download it and have it backed up on their own online backup systems; some send it out to a few other people; and some do all three. How many places can we find the cat? It’s a hall of mirrors, a grain of wheat doubling on each square of a chessboard. All of it eats kilowatt-hours. How much fracking is that cat porn worth to you?

All online content is not born equal. It takes very little electricity to support text, even italics. Graphics such as photos and drawings are much more energy-intensive. Music exceeds even graphics, and video (bouncing bunnies, or time-lapse wrinkle cream results) is the greediest of all.


FILE SIZE MATTERS. A text-only file of the Bible is approximately 1.5 MB. With pictures, depending on how elaborate, it is closer to 100 MB. A 2-hour video about the greatest story ever told would use up more like 1-1.5 GB.Comparing music and video, a 4-minute video would use about 24 MB, while 4 minutes of music would use only about 4 MB.


Online action is hosted and processed in massive data centers that use up to 100 or even 200 MW of demand; data center operators are not often eager to release this information. Chicago’s Lakeside Technology Center (a data center) reportedly draws 100 MW, a higher electric demand than any other Commonwealth Edison customer except O’Hare airport. A quick check reveals what a “renewable” electricity supply would look like for a facility like this. With bike generators: over a million generators, over four million pedalers, and almost half a million acres, which is 757 square miles (almost three times the size of Chicago). Probably not available anywhere near the Loop. Using solar panels: 2917 acres (2210 football fields), not counting battery space, which is also probably not in the Chicago zoning plan. Using wind in the “windy city”: 9347 acres (or 7081 football fields), again not counting battery space.

As Alex Roslin of the Montreal Gazette put it, if the Internet were a country, it would be the fifth biggest power consumer, ahead of India & Germany.7


Tax breaks and other subsidies are common for data centers. Even modest-sized ones often reap government subsidies for drawing huge amounts of electricity and providing fewer jobs per buck, or per kwh, than almost any other kind of facility.

For instance, in 2007 a Google Inc. data center got tax breaks on utility bills, plus a property tax exemption. Iowa’s own web site describes the tax exemption as including “cooling systems, cooling towers, and other temperature control infrastructure….also exempt from property tax are all power infrastructure for transformation, distribution, or management of electricity used for the maintenance and operation of the web search portal, including but not limited to exterior dedicated business owned substations, back-up power generation systems, battery systems, and related infrastructure; and racking systems, cabling, and trays, which are necessary for the maintenance and operation of the web search portal.”

Iowa even calculated its expected tax losses: $3.6 million in 2009, $12.7 million in 2010, $22 million in 2011, and $32.7 million in 2012. The corporation got a similar deal in North Carolina, where estimates of tax losses to the state were approximately $97 million over 30 years.

Lack of enforcement of environmental and occupational safety laws across the board is an often-overlooked form of subsidy available to large corporations, including data centers. This includes the cradle-to-grave production, processing, transport, and use of nuclear and fossil fuels, as well as the toxic waste and byproducts of same. Companies burn through energy and resources far more cheaply than would be possible if laws “on the books” were enforced.

Finally, there are those bargain-basement electricity bills. Data center electricity rates are as low as 3-4¢/kwh, while residential customers pay much higher rates: easily 15, 20, 25¢/kwh, and even steeper when charges for distribution and other fees are included.8

The public is massively subsidizing data centers, the Internet, and the profits of IT corporations. Yet, many corporations with huge data centers are not eager to advertise their locations, and use third parties to negotiate their deals. Some go to great lengths to hide their electricity use. In 2007, for example, at Google Inc.’s urging, Oklahoma rewrote its open records law to allow data center owners to conceal from the public the amount of electricity used.


When I raise the issue of the massive electricity use of all things Internet, everyone tells me how efficient IT is becoming.

The idea that efficiency reduces consumption is at best debatable, and at worst a public relations scam. As Don Fitz wrote in “Why Energy Efficiency Isn’t Reducing Consumption” (Synthesis/Regeneration, 2009), over a century and a half of research on the relationship between efficiency and consumption of a resource has marshaled considerable evidence that the opposite is true. Since Stanley Jevons documented that coal consumption increased ten-fold after smelters tripled their efficiency (The Coal Question, 1865), the phenomenon has been called the Jevons Paradox. Historically, in capitalist systems, increased efficiency has led to more consumption, not less.

Being efficient is good, but it does not mean sustainable, it does not mean green, and it does not portend reduced consumption. Data center efficiency is improving, and Google Inc.’s are reputed to be among the best. But when Gaia is diminished by the ripping out of coal, and the dumping of sludge, her suffering is in no way reduced if the resulting electricity is used “efficiently.” Earth’s problem is not the inefficiency of resource use, but the quantity. Ask Gaia.


Why do we figure out the ecological implications of eating a hamburger but not clicking a search? When it comes to food, the green or even greenish band of the political spectrum is all over it. Local food. Organic food. Slow food. Urban agriculture. Permaculture. Rooftop gardens. Alice Waters, Will Allen, Michael Pollan. “Eat food. Not too much. Mostly plants.” Fast food nation. Eat low on the food chain.

But when it comes to the Internet, people spout shallow unexamined cliches as they tap at sleek, shiny gadgets. The PV panels at Google Inc.’s headquarters and other cheap stunts deflect attention from the enormity of Internet energy use. Engineering Professor Mohamed Cheriet, at Montreal’s Ecole de Technologie Superieure, who works on “green” IT innovation, gushes, “We’ve found the key to the problem: Follow the wind, follow the sun.”9 The Internet is the fast food triple bacon cheeseburger of communications, yet people are convinced it’s green.

Are the brains who figured out it takes 150 or 630 or 1300 gallons of water to produce a hamburger just out to lunch when it comes to the Internet? Why is the Internet—a global system if there ever was one—immune from the same analysis? Spending two hours on the porch showing your neighbor your family photo album is not especially energy-intensive. Doing so online, and sending it around to everyone on your email list, carries vastly higher ecological costs.

What’s the actual content that billions of publicly subsidized kwh go to support? Nicholas Carr (The Big Switch, 2008) estimated in 1996 that 94% of all emails are spam, and that there may be 85 billion spams a day. This year, John Markoff in the New York Times claimed that about 90% of all email is still spam, and that one single spam campaign generated three emails for each person on the planet, some 21 billion messages. Ken Auletta (Googled, 2009) suggested that as many as a quarter of all searches are for porn. According to Alex Roslin at the Montreal Gazette, 250 billion emails are sent daily.10 The study Markoff referenced suggested that over 12 million messages were needed to sell $100 of Viagra.11 Dennis Walsh from green@work, among others, states that over 200 million Internet searches happen daily in the U.S. alone; 100 million photos are uploaded daily. Google Inc. has reported that it carries out about a billion searches per day, according to James Glanz in the New York Times.12

One person estimated that fantasy football aficionados spent 2.4 billion hours online per season.13 Online games, role-playing, social networking, gambling, and an almost unbelievable amount of advertising is up there in the “cloud” at tremendous energy cost. Much of it is not the relatively energy-cheap text, but the photos, music, video, bouncing cartoons, and interactive click-fests that are hundreds or thousands of times more energy-intensive. Subsidizing the entire current Internet system because an activist can upload photos of stripmining and clearcutting is like subsidizing an industrial-sized WalMart because six feet of shelf space holds organic spinach.

The Internet is not, and will not be, powered by so-called renewable energy, magical energy that is somehow without consequences. Sleek, glowing screens may hide the truth from people who don’t want to hear about it, but the consequences remain. The real costs of Internet electricity use are being cast over state boundaries and national borders, across class, ethnic, and species lines, and onto future generations.

In hindsight, most wish that we had used a little more foresight about the automobile. And, we are a species with a decidedly mixed record on learning from history. Today is a good time to look up from our screens and take advantage of the fact that we are still in the Model T era of the Internet.

If we keep pretending that the Internet is innocuous, neutral, democratic, clean, and green, we can look forward to more iPipelines, iFracking, iMountaintop Removal, iCoal Plants, iNukes, iStripmining, iSpecies Extinction, iHabitat Loss, iClimate Change, iTar Sands, iSludge, iOil spills, iFloods, and continued iResource Wars.

Or, we can begin to give it the attention we give a burger.

This was first published by Earth First! Journal, May 31, 2012 and Jan. 8, 2013.

Corporate anthropologist Jane Anne Morris (democracythemepark.org), whose most recent book is Gaveling Down the Rabble: How “Free Trade” is Stealing Our Democracy (Apex/Rowman & Littlefield, 2008), first wrote about Internet energy use in “The Energy Nightmare of Web Server Farms: Feet in the Cloud, Head in the Sand,” Synthesis/Regeneration 45: A Magazine of Green Social Thought, Winter 2008 (www.greens.org/s-r/45/45-03.html).